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Introduction.

In determining the global methane budget the sources of methane must be

balanced with the sinks and atmospheric inventory. The approximate contribution of the

different methane sources to the budget has been establish showing the major terrestrial

inputs as rice, wetlands, bogs, fens, and tundra (Matthews and Fung, 1987; Stevens and

Engelkemeir, 1988; Cicerone and Oremland, 1988; Wahlen et at., 1089; Fung et al.,

1991). Measurements and modeling of production in these sources suggest that

temperature, water table height and saturation along with substratum composition are

important in controlling methane production and emission (Tyler et al., 1986, 1987,

1997; Crill et al., 1988; Moore and Knowles, 1990; Cicerone et al., 1992; Moore and

Roulet, 1993; Yavitt et al., 1993; Moore et al., 1994; Tyler et al., 1994; Baubier et al.,

1995; Moosavi et al., 1996; Granberg et al., 1997).

The isotopic budget of 13C and D/H in methane can be used as a tool to clarify the

global budget. This approach has achieved success at constraining the inputs (Stevens and

Rust, 1982; Wahlen et al., 1989, 1990; Wahlen, 1993; Quay et al, 1988, 1991; Lowe et

al., 1994). Studies using the isotopic approach place constraints on global methane

production from different sources. Also, the relation between the two biogenic production

pathways, acetate fermentation and (ZO2 reduction, and the effect of substratum

composition can be made using isotope measurements (Whiticar et al., 1986; Burke et al.,

1988, 1992; Martens et al., 1992). Figure 1 (from Wahlen, 1993) shows the relation

between the different biogenic, thermogenic and anthropogenic sources of methane as a

function of the carbon and hydrogen isotope values for each source and the atmosphere,

tropospheric composition. Included on figure 1 are the theoretical limits on the acetate

fermentation and CO2 reduction pathway reactions which constrain the biogenic inputs

(Whiticar et al., 1986).

Methane emissions from ponds and fens are a significant source in the methane

budget of the boreal region. An initial study in 1993 and 1994 on the isotopic

composition of this methane source and the isotopic composition in relation to oxidation

of methane at the sediment surface of the ponds or fen was conducted as part of our

BOREAS project. The isotopic composition of methane emitted by saturated anoxic

sediment is dependent on the sediment composition and geochemistry, but will be

influenced by in situ oxidation, in part, a function of rooted plant activity. The influence

of oxidation mediated by rooted plant activities on the isotopic composition of methane is

not well known and will depend on the plant type, sediment temperature, and numerous

other variables. Information on this isotopic composition is important in both

understanding the bio-geochemistry of the system and also in determining the regional

and global inputs for the methane isotope budget.

In determining the destruction of methane for balancing the atmospheric methane

budget soil oxidation must be considered. The primary destruction rate for methane and



isotopefractionationby OH in thetropospherehavebeenestimatedby experimentsand
budgetconstraintsandmodels(Davidsonetal., 1987;Cantrelletal, 1990;Vaghjianiand
Ravishankara,1991)andbydirectmeasurementsin the lowerstratosphere(Wahlenetal.,
1990;Brenninkmeijeretal., 1995)but theratesor evenreactionmechanismsarestill
uncertain. In additionto OH destructionthereis a smallbutsignificantnetconsumption
of atmosphericmethaneby moistaerobicsoils (Keller etal., 1983,1986,1990;Whalen
andReeburgh,1990;CrilI, I99I; Strieglet al., I992; Decket al., I993). The exact

quantification of this consumption in the global budget is not well known but it could be

from 5% to as high as 15% (Born et aI., 1990; Crutzen, 1995) and has been found to be

sensitive to the climate influenced parameters of temperature and moisture (Mosier et al.,

1991; Tate and Striegl, 1993; Mosier et al., 1993; Bender and Conrad, 1994; Czepiel et

al., 1995; Castro et al., 1995; Ball et al., 1997). Isotopic changes in methane associated

with soil oxidation has been investigated in very few cases (King et al., 1989; Deck et al.,

1993; Tyler et al., 1994a), and a fractionation value for 13C (or more importantly D/H) to

be applied to the global soil uptake is uncertain.

Con-current consumption of methane in association with anaerobic production has

been recognized in virtually all areas where substantial methane fluxes have been

measured. In regions of high methane production such as tundra, bogs and fens,

consumption in surface layers can be a direct regulator of methane emission (Chanton et

al., 1992, 1992a; Fechner and Hemond, 1992; Kelly et al., 1992; Happell et al., 1993;

Bergmaschi and Harris, 1995; Granberg et al., 1997). Methane oxidation balanced with

consumption at a high rate is associated with rice paddy methane production (Sass et al.,

1992; Tyler et al., 1997). In drier aerobic zones of tundra, bogs and fens, in close spatial

proximity with the anaerobic production, net methane consumption at ambient air

methane levels is found (Whalen and Reeburgh, 1990; Moosavi et al., 1996). In

extensive areas with moist soils including sub arctic, boreal forest, temperate forests and

grasslands, tropical forests and savanna, and even desert soils, minimal net consumption

of methane is often observed close to sites of production. It has been suggested by

Reeburgh, 199X that when gross methane consumption is compared to gross production

from all areas, that the consumption is a significant fraction of the production term and

that global budgets should be described to reflect this. Incubation experiments on wetland

soils (Moore and Knowles., 1990; Moore et al., 1994) show the ability of the soils to

support production or oxidation depending on oxygen levels. The work of Bender and

Conrad, (1994) suggest that two different species of methanotrophs exist. One species,

primarily, in association with methanogens in a production/consumption relationship

with the ability to utilize methane at higher than ambient concentrations, and another

species which is able to utilize methane at ambient and sub-ambient methane

concentrations. Consumption of methane in soils appears to be sensitive to temperature,

moisture content and nutrients (N- fertilization) (Mosier et al., 1993; Czepiel et al., 1995;

Castro et al, 1995), but the greater control on consumption appears to be the soil structure

with respect to porosity and channeling which determine the diffusional transport of air in

the soil (Striegl et al., 1992; Bender and Conrad, 1994; Ball et al., 1997) and the

distribution of the bacteria in the soil (Koschorreck and Conrad, 1993). Studies in both

tropical and temperate regions show a marked change in methane consumption when



forestsoilsarecleared,orsavannaandgrasslandareconvertedto pastureor cultivated
(Kelleret al., 1990;Pothetal., 1995).

Studiesof the isotopicfractionationin methaneduringsoil consumptionarefew
andtheerror in individualanalysisoften large. Datafrom borealsoils (King et al., 1989),
borealforests(Deck,in preparation), temperateandtropicalsoils(Tyler et al., 1994a;
Decketal., 1993)andevenlandfill soils(BergmaschiandHarris, 1995)showa rangeof
isotopefractionationfactors(Table I). This rangeis, however,consistentwith the
observationsof Colemanet al., (1981)onmethaneoxidationby methanotropicculturesin
the laboratorywhich showedfractionationfactorsct= 0.975to 0.987. For soil methane
oxidationvaluesto beincorporatedinto theglobal methanebudget,abetter
understandingof thecontrolsontheobservedfractionationmustbedetermined.
Allowing theassignmentof soil oxidationvaluesfor different regionalsoilsbasedon
measuredvalueswouldrequireanextensivesetof measurements.A moredesirable
approachwouldbeto determinetheenvironmentalcontrolson theapparentsoil isotope
fractionation.TheBOREASsitesprovideda selectionof sitesrepresentativeof a large
globalextentwheretheconsumptionof methaneby soilscouldbeestimateusingthe
isotopicapproach.

Resultsof previous soil methane isotope consumption studies.

The recent work by our group prior to, and in preparation for the NASA,

BOREAS provided a set of data which can be used to evaluate methane oxidation and

carbon isotopic fractionation in boreal forest soils. This information on dry soils (Deck et

al., 1993) and a moist temperate forest site can be compared to the other available studies.

For procedural comparison, our samples for all sites except the forest site in Albany, NY

were sampled in 2 liter glass flasks from, small, approximately 0.5 m 3 volume, chamber

enclosures with the actual methane concentration being determined on the sample prior to

isotopic analysis. Chambers were mixed before sampling and were not open to the air

during the time required to fill the sample. Samples for the BOREAS work in 1996 were

taken at 1 hr and duplicate samples at 2 hr and the difference in concentration found

between the replicates was rarely greater than 1%. We have, thus, not corrected our

results for air dilution during sampling.

A moist forest site near Albany, NY was measured in the summer of 1989 and

1990. This site had a very porous, organic rich, soil where sites of measured methane

consumption in excess of 5 mg/m2/d were within meters of, water saturated, methane

producing sites. A set of large volume samples, taken within 2.5 hr of enclosure using a

large (aprox. 4 m 3) plastic tarp chamber, were analyzed at high precision. The results and

derived enrichment coefficient c_ of 0.983 for this data are shown on figure 2, where ct

--{ln[(Sl3Ct+1000)/513Co+1000)]/In(f)} +1, for initial (o) and time (t) isotope

concentrations and a (methane concentration determined) fraction remaining (f), (King et

al., 1989).

In 1992 and 1993 a dry forest site (Los Monos Canyon Reserve) near Vista, CA

was sampled approximately monthly. Several sites of open forest and grassy areas were



sampledwherea compactsoil characterof low organiccontentwascommon.The
averagemoisturecontentof theLosMonossoil duringthesummerandfall sampling
timeswaslow, 2%w/w or below,andmethaneconsumptionrarelyexceeded0.8mg/m2/d
eventhoughsoil methaneprofilesshowedrapidconcentrationdecreasesfrom thesurface
to 40cm. In thewinter andspring,following rain events,thesoil moistureincreasedand
methaneconsumptionratesashighas2 mg/m2/dwereobserved.Althoughthechamber
size(largevolumeto soil arearatio), low consumptionof methane,andanalytical
proceduresintroduceduncertaintyinto thedata,theresults(Figure2) showtheeffectof
fractionationwith decreasein methaneandsuggestanobservedfractionationof
approximatelytx -- 0.978 significantly greater than that found for the temperate, Albany,
forest site. Chamber enclosure time for these experiments were kept to < 3 hr despite the

low methane consumption.

Experimental approach and summary of the BOREAS sampling.

Methane isotopic measurement in conjunction with the BOREAS project were

made on sample taken during the field efforts in 1993, 1994 and 1996:

Sediment methane production

Ponds and fens often show visible bubble release of gasses and have large net

fluxs of methane into the atmosphere. The investigations started here were not meant to

quantify the net flux, but to allow a determination of the isotopic composition of the

emitted methane. Dislodged bubbles from anoxic sediments from 5 beaver ponds and the

NSA Tower Fen site were sampled in 1993. Funnels at the water surface quantified

bubble release while monitoring of the overlying water and sediment pore waters was

made to determine sediment/water gas exchange. Bubble and sediment/water samples

from the Tower Beaver Pond (NSA, TBP) were taken in 1994 to determine the carbon

and hydrogen isotope values of methane emitted from this site. Initially it was anticipated

that work on these samples and work on sediment production would continue thorough

out the project, however, with the imposed budget cuts and recommendations by the

science team, limited sampling was made. Also, as a result of the lack of collaboration

with other investigators supporting data for the samples is incomplete and few

conclusions can be made from the results obtained. The data is presented as appendix 1

however, with a brief description of the results.

Forest soil oxidation

To determine the effect production and oxidation at the land surface has on the

overlying atmospheric concentration the flux of any gas through the various pathways

into or out of the soil or sediment by biota must be determined. In the case of methane in

boreal forests, the interaction between the atmosphere and forest soils is direct and not

thought to be mediated to any major extent by trees or woody plants. Thus, the flux of
methane into or out of the soil can be determined, and the isotopic fractionation



examined, by placing closed chambers on the surface for a period of time. In addition,

samples of soil gas taken below the soil surface will provide information on the rate of

methane consumption and the isotopic fractionation with soil depth. In either situation

changes in concentration and isotopic composition of methane over time will indicate the

effect the soil or sediment will have on the overlying atmosphere (source/sink).

The basic problem with this sampling approach is to avoid having chamber

placement cause perturbations of the naturally occurring gas exchange either through

biological or physical changes in the system. To this end, the temperature, humidity, air

circulation, light and other parameters inside the chamber can be controlled to mimic

those outside the chamber. In many cases controls on chamber parameters are not

adequate for extended periods of'time and the best sampling strategy is to leave the

chambers enclosed for only the time required for the minimum consumption of methane

necessary to ensure the accuracy needed in the determinations. For concentration changes

in methane, the high degree of precision attainable allows for short (0.3-0.5 hr) maximum

enclosure times. In the determination of isotopic methane composition the times

necessary for measurable changes to be determined with reasonable precision in the

analysis are a factor of 2 to 4 longer. In addition, care must be observed at all times to

ensure that the sampling and storage procedures do not introduce additional errors.

Finally, it must be realized that chamber, and soil probe samples, and/or any discreet

measurements at a finite number of sites can only approximate the estimates of actual

average soil-atmosphere interaction, at any one site.

Gas samples from flux enclosures (chambers) over the soil and subsurface soil gas

samples were taken and returned to our lab for analysis. While some concentration

measurements were made in the field in conjunction with others investigators, our data

sets consists of methane concentration and carbon isotope (13C/12C) ratios for each

analyzed sample. Due to the large amount of time necessary for the processing of the

isotope samples, a limit on the number of samples taken in any field season was

necessary. The fewer the number of samples or the greater variability in site

characteristics, the poorer the data approximation. The limitations on number of samples

taken imposed by isotopic analysis procedures are significant in this study, but are

balanced in part by the uniformity in microbial biochemistry which drives the methane

production and consumption in all areas.

Sampling data and sites

Data were collected once in 1994 and at four time periods in 1996, from two sites

near the towers at the Old Jack Pine (OJP) and Young Jack Pine (YJP) sites, in the

Northern Study Area (NSA). A set of chamber measurements from the SSA, OJP and

YJP sites along with soil gas samples were also obtained in 1994. At OJP the Crill

(TGB-1) Lichen chamber #4 and the Crill Moss chamber #7 were sampled. For the YJP

Moore (TGB-5) chambers, #4 and #6 were sampled. Two liter samples were taken from

each of the chambers, drawn over a 1 to 3 min sampling period, at times of 0.75 to 7 hr

depending on estimated methane uptake. The chambers at the OJP were approximately

20m apart while those of the YJP were within 5m of each other. Soil probe samples were



takenat shallowdepthsin the immediate(1m) vicinity of thechambers.Sampleswere
drawnslowly (5 min for 2 liters) to avoidcontaminationfrom gassuckedin from
intermediatelevels. A summarydescriptionof thesamplingfollows:

Sampling NSA93 24-Aug-93:Bubblesfrom dislodgment,FenTower ramps1,2and3.
25-Aug-93:Bubbles,Gilliam Rd.BeaverPond(GBP, 14.5km N of 391)westshore.26-
Aug-93:Bubbles,OBSbeaverponds#3,4, and 1, TowerBeaverPond(TBP)south
shore.All sampleswerefrom nearshorewateratdepthsof 10-50cm;abundanceand
speciesof plantsandalgal variedgrowth.

Sampling SSA94 4-Aug-94: YJPTF-4chambersA, B, andD soil probesAUB15cm,
20cm. OJP,TF-4chambersG, H, andJ probesG/H 15cm,20cm. Samplestakenby the
R. StrieglTF-4group,chambercollectiontimeswerelong(14-16hr.).

SamplingNSA94 24-Aug-94: OJP,threechambersat TGB-1 lichensite,nocollars,
threesoil gasprobes.YJP,3 chambersTGB-3collars#4,5and6, five soil probes1-2
meterssouthof TBG-3soil tubes.25-Aug-94: Towerbeaverpondsamplescollected
from funnels,pizometers,overlyingwaterprofiles. BOREASAES 2ppmand0.9ppm
standardssampled.26-Aug-94 YJPTGB-3soil tubessite lc and3asampledat 20and
40cmdepth. Ambientair sampledeachday.

31-Aug-94through13-Sep-94:Towerbeaverpondsamples,grossbubbles,funnel,
pizometer,andwatersamples.Takenby A. DoveTGB-3.

SamplingNSA96 29-May-96to 3-Jun-96:Groundfrozenbelow 15cm of thesurface:
soil temperature< 10C;highdegreeof watersaturation.Onesampletakenat each
chamber,OJPat approximately4.5hrs,YJPat approximately6 hrs. No soil probe
samples.

28and29-Jun-96:Onesampletakenfrom eachchamberat 1.5to 2 hrs(sampledby
KathleenSavageTGB-3). No soil gassamples.

1-Aug-96to 4-Aug-96: Generalsurfacetemperaturesapproximately25C;weather
goodanddry. Duplicatesamplesat 45and90min afterclosurefor bothOJPchambers;4
soil probesamples,two neareachchanlberatapproximately20 cm depth. Samplingfor
theYJPsitewasidenticalexceptfor samplingtimesof 1and2 hrsfor thechambers.

8-Sep-96to 12-Sep-96:OJPsampled8-Sep;light showerstwo daysprior; chamber
weresampledin duplicateat 1and2 hr times. Soil samples,two neareachchamberat
approximately15cm depth. Coldheavyrain for two days. OJPsamplestakenon 11-
Sep,temperature<9C. Singlesamplesat l hr, duplicatesamplestakenfrom each
chamberat 2 hrsafterclosure. Two soil probesamplestaken15and 17cm. Two
ambientair samplescollected.



Experimental.

Samplesfrom thewetareas,beaverpondsandfen,weretakenfrom theshoreor
walkways.Samplestakenfor methaneproductionfrom submergedsedimentswere
primarily obtainedby capturingbubblesthathadeitherbeenreleasedover timeor were
dislodgedby motion fromthesurfaceof thesediment.Thegasfrom thesesamples(20 to
100co)wastransferredto evacuatedserumbottleswith rubberseptumcaps.Severalsets
of samplesequilibratedwith heliumgasfrom watersamplestakenabovethe sediments,
or from pizometersin thesedimentswerealsocollectedbytheTGB-4 group.

Soil gasexchange(NSA) wasmeasuredusingeitheraluminum(OJP)or plastic
(YJP) enclosuresof 0.4m2and0.075m 3 or 0.05m 2 and 0.018m 3, respectively. The

chambers rested on skirts permanently placed 10 cm deep in the soil in 1993 or 1994 and

were equipped with a water seal to prevent air leakage. Once the chambers were in place

the air was mixed approximately every 5 min either with a fan or by rapidly drawing and

returning 50cc of air several times with a syringe. After a suitable time period (0.75 to

2hr, in most cases) air samples were withdrawn through a restricting manifold, to prevent

a sudden vacuum in the chamber, into 2 liter evacuated glass flasks with high vacuum

valves. The sampling manifold was evacuated to remove extra air and to check for leaks,

after being attached to the sample flask, prior to the sample being taken. Sub surface gas

samples were taken using a pointed 3/8" steel probe inside of which was a 1/8" tube

connected to a nose chamber open to the soil through several small holes. This probe was

pushed into the soil to the desired sampling depth, the manifold attached and evacuated,

and then the sample flask (as above) was filled. For the sub surface samples the manifold

was set to allow approximately 3 rain for the flask to fill. For a few of the 1994 soil gas

samples, horizontal 1/8" sample tubes (TGB-3) previously placed at several depths in the

soil were used following the same procedures.

Methane concentration analyses were performed with a flame ionization gas

chromatograph equipped with a 2m 1/8" Porapack Q (60-80 mesh) column using nitrogen

as a carrier gas. Replicate peak height measurements from a chart recorder were used to

quantify the results. The inlet line to the sample loop was equipped with a precision

pressure gauge calibrated to 0.5%. Methane in air standards at 959, 1649, and 2722 ppb

were run at several pressures, several times during sample analyses, to allow correction

for any deviation in linearity as a function of pressure or concentration.

Separation and combustion of the methane in the chamber and soiI gas samples to

CO2 for the mass spectrometric analysis was performed on an extraction line specifically

designed for this type of sample. The 2 liter (air) sample was passed at 50cc/min or less

through two LN2 (liquid nitrogen) cooled traps to remove water, CO2 and other

condensable gases, then through a trap containing several grams of 10 mesh activated

charcoal. This charcoal column retains 500-800cc of air (N2, 02) at any time with

methane and other trace components totally retained. After the entire sample is

processed (down to <10 torr), and pumped at vacuum for 15 min, the charcoal is allowed

to warm from LN2 temperature to approximately -150C over a period of 5 min. During

this time the majority of the air retained on the charcoal is allowed to bleed off at a

carefully controlled rate, while the methane is retained. Then the charcoal column is
immersed in a -90C acetone bath and the air allowed to continue to bleed off at a



controlledrate,againretainingthemethane.A low flow of helium is passed through the

column to dislodge additional air from the column for 1 min. At this time the gas on the

charcoal is transferred to a smaller charcoal column (approx. 1 gm) in LN2, by warming

first to room temperature 10 min, then at 240C for 10 min. In a manner similar to that

above, the second charcoal column is warmed and again any remaining excess air allowed

to be removed. Helium is passed through the first column onto the second to maximize

the transfer. At this stage I to 2 cc of total gas containing approximately 3.7 microliters

(or less) of methane (corresponding to the methane in 2 liters of ambient air) remains.

This sample is transferred to a inIet loop of a thermal conductivity gas chromatograph

fitted with a special low flow MS5a column using helium carrier gas. The flow

parameters of the column and detector have been adjusted so that a nearly complete

separation of methane from nitrogen can be obtained with an elution time of 25 min at

room temperature. The methane eluting from the column is captured on a short MS5a

column and transferred, following removal of the residual helium, with a MS5a finger to

the combustion system. The combustion of the methane was done by condensing the

methane sample at LNz temperature onto 2 aluminum oxide pellets coated with platinum

(Alfa #89106), condensing a tenfold excess of pure oxygen onto the pellet, followed by a

combustion of the mixture at 650C for 1 hour. The CO2 was then separated from the

water produced trap at -70C, quantified, and then sealed in a 6mm glass break tube for

later mass spectrometric analysis. Extensive work was necessary to initially clean, and

learn how to keep the combustion pellets clean. This resulting in a low CO2 blank for this

step. Samples with methane concentration higher than ten ppm required proportionately

smaller than 2 liter air samples for analysis. Samples in the percent methane range were

able to be processed using similar GC steps and combustion. When more then 50 ul of

water (as vapor by volume) were generated the water was saved for D/H isotope analysis.

Calibrations were performed using methane standard concentration

determinations and isotopic analysis conducted at SIO during the lab analysis. Methane

determination on field samples were made with a manometric manifold inlet loop on a

flame ionization gas chromatography system with a 2 meter 1/8" 60-80 mesh Poropack Q

column, nitrogen as carrier gas. Calibration was performed with a set of 5 working

standards covering the range of 0.8 to 2.8 ppm previously calibrated against SIO/CSIRO

international standards (R. Weiss) to better than 0.2%. Overall precision and accuracy of

our system in this range was approximately 0.5%. Calibration against the BOREAS

working methane standards (0.9 and 2.0 ppb) also showed this agreement within

experimental errors. Samples with higher than 3 ppm methane concentration were

diluted and/or injected at reduced pressure and calibrated against volumetric standards up

to 100% methane. Uncertainty for these samples was approximately 5%.

For the 2 liter soil chamber and probe samples runs on the extraction line, pure

nitrogen blank determinations, synthetic air standards and calibrated isotopic methane

standards passed through the lines and combustion systems during development provided

the calibration of the system. For calibration during normal runs clean SIO air was used

as a standard, with a methane _3C value of-47.2 permil PDB. Approximately 1 standard

per 4 samples were run. Based on replicate SIO air standards (2 liters) and replicate 2

liter samples taken in the field the uncertainty in analysis was found to be primarily

dependent on the uncertainty introduced in the separation procedure. This was



determinedto beapproximately+/- 1permil. Themassspectrometricdetermination
errorwas far smallerthanthisvalueandis includedin the+/- 1permil value. Actual runs

of the mass spectrometer using our working standard and cold finger (-43.40 +/- 0.05

permil), measured in the size range of the samples, yielded a running precision of better

than +/- 0.1 permil.

For samples of higher methane concentration from production sites the variability

for the sample size processed again limited the error to approximately +/- 2 permil (PDB)

for carbon and +/- 5 permil (SMOW) for hydrogen isotopic composition.

Error in this data are a combination of errors introduced during sampling, sample

transport and storage, processing and analyses. The greatest uncertainty in any of the data

results from the synoptic nature of the discrete sampling. Samples taken in close

proximity to each other varied in their data values, often with results differing by more

than any combination of experimental errors would allow. In this study sample storage,

processing and analysis procedures were checked before and during the field work using

standards and blank determinations, and the associated error determined.

Errors introduced during sampling could be inferred from several conditions, such

as lack of good seals on chambers, or long chamber deployments, which did not

reproduce the normal planned conditions of sampling. Where there are indications that

this happened, it has been noted with the sampling data. Analysis of some of the data,

such as with the methane production samples show an enormous range of values, in part

because they were sampled in several different ways, at several different sites. Also,

questions such as dislodged bubbles representing the release of methane as shown by

funnel collected bubbles are not considered. Lacking a more complete data set describing

many additional parameters influencing methane production/consumption, analysis of

even the error from this type of sample is difficult.

Results and Discussion.

The results of the BOREAS experiments as tabulated for the BOREAS

documentation set are included in appendix 1 for the beaver pond and fen sites where

methane production was studied, along with a short discussion. For the soil methane

oxidation experiments, the results from chamber enclosures and soil gas samples are

discussed here while the tabulated results are included as appendix 2.

In a modeled "ideal" case where soil methane consumption and soil parameters

are uniform with depth and biological activity constant over time and independent of

methane concentration, methane consumption in an enclosure placed on the soil surface
will show a decrease in concentration in a linear fashion. Soil methane concentrations

with depth should also be linear. In this ideal case a linear trends should be seen in

isotopic values measured if plotted against the natural log of the fractional concentration

remaining. In a sampling system of this type any leakage of the chamber with outside air,

at the same initial ambient concentration and isotopic composition, will change the

concentration and isotopic composition. Equally. A change in the isotopic composition

vs concentration relationship if plotted as In (f) will be seen as a departure from linearity.



To analyzetheeffectsamplingmighthaveon thedatacollected,thesituation
wherea 20 liter chamberat 1400ppbconcentrationhavinga2 liter sampleremovedand
replacedwith ambient1850ppbconcentrationairwasmodeled.The modeled change in

concentration in the chamber would be approximately 40 ppb with an isotopic change of

-0.25 %0 using ambient and sample values of-47.5%0 and -44.7%0 respectively. The

change to the derived ct from this modeled data would be -0.0001. With respect to our

actual samples this is a worse case scenario since half the chambers sampled were of

approximately 75 liter volume. For our samples, an examination of the data for the 1996

enclosures (appendix 2) where 8 sets of duplicate 2 liter samples were taken shows that

changes in concentration as a result of sampling were usually smaller than 25 ppb and in
all but one case were towards a lower concentration indicating that gas from the soil not

outside air was being advected into the chamber. Since the relation of isotopic change vs

concentration found in the soil is approximately that observed in the chamber (to be

discussed below), the effect of sampling in this case on the chamber data would be

extremely small.

In the "real" soil/biological system several factors modify the conditions described

above. Biological consumption of methane has been shown not to be uniformly

distributed in the soil but more often localized in sub surface zones (Amaral and

Knowles, 1997). Neglecting temperature and moisture effects, bacterial consumption is

dependent on concentration, and slows as concentration decreases, often becoming

minimal at concentrations below 200 ppb. Soil structure is also not uniform and soil

diffusive transfer has been found to be very important (Ball et al, 1997; Dorr et al., 1993).

Greater diffusion and advection in the surface layers can also influence the chamber

determinations if mixing in the chamber does not match that outside the chamber. All of

these factors can cause non linear profiles to be observed in the chamber concentration

measurements as a function of time. However, since the biological isotopic fractionation

is not normally a function of methane consumption rate or mixing, the data from isotopic

measurements as a function of In (f) will remain linear. This feature is shown on figure 2

where the data from the temperate forest near Albany, N.Y. are plotted.

Factors which are thought to possibly alter the isotopic fractionation are

temperature, moisture level, oxygen concentration and carbon substratum composition.

The research in the BOREAS sites was proposed to examine these factors. The data from

most chamber enclosure samples taken in 1994 and 1996 are presented as figure 3. The

1994 NSA-OJP samples were taken on a very windy day with poor enclosure seals. As a

result, the values show little consumption and are very close to the ambient air values.

Values from the 1994, NSA-YJP site plot on or below the c_ = .984 line and in

comparison to the data on figure 2 lie in approximately the same range as the Los Monos,
CA data. The conditions for this set of samples were a fairly warm and dry soil similar to

that at the Los Monos site suggesting greater effect of fractionation under these

conditions as compared to the Albany, NY samples, where the soils were cool and quite

moist, or the BOREAS 1996 samples. The data from the 1994 SSA sites (OJP and YJP),

plot in a zone indicating significantly less fractionation than any of the other data which is

puzzling since soil conditions were reported to be similar to those for the NSA samples

(Striegl, per. Com.). A closer examination of the sampling data revealed a very long

enclosure times, a factor which will be discussed below.



In 1996attemptsweremadeto closelyreplicatetiming and sampling procedures

for the chambers in the NSA, OJP and YJP sites (two sites each). The results for the late

June, August and September samplings are shown on figure 3 and 4. The results from the

early June sampling are not plotted as two of the four data point had enormous scatter,

most probably due to the very cold, saturated and/or frozen soil conditions. The high

correlation of the 1996 data over the range of soil conditions represented at the two sites

sampled, with respect to temperature and moisture changes found from June through

September in an average year, strongly suggests that these effects are not important

during most of the time the soils are consuming methane. This result is consistent with

the observations of Savage et al. (1997).

In trying to explain the anomalous trend of the data from the 1994, SSA, the 1996

data were examined in closer detail. When the data is expanded and differentiated as a

function of chamber enclosure time a distinct difference in correlation between the 45 to

60 min samples and the ones taken at 90 and 120 min. is found (figure 4). The difference

between the sets cannot be explained by sampling or leakage artifacts as shown above and

must result from changes in either the isotopic fractionation constant with time or

possibly the effect of concurrent methane production in the soil.

The concept of concurrent methane production with aerobic soil microbial

consumption is not new. In many tundra and moist soils sites with neutral or minimal

consumption have been found close to sites of production. For dry soils however, the

concept of minimal concurrent production in a aerobic soil has not been examined, nor

has the probable effect on the apparent values of o_ found in the limited isotopic

fractionation studies that have been made (table 1). King et. al., (1989) mentioned this

possibility, but did not mention that this might be a possible reason for the difference

between the results for the two chamber experiments they describe. Briefly, the two

chambers they measured showed fractionation values a of 0.974 and 0.984. To be sure,

the condition in the chambers were not the same with regards to soil type and

temperature, but more importantly may have been the chamber enclosure times of 2 and 8

hr, respectively. If methane consumption over the enclosure time is a function of the

available methane remaining while concurrent production a constant (or possibly)

increases due to decreasing oxygen in the soil), the net result will be a leveling trend in

chamber methane concentration vs. time and a decreasing apparent enrichment in isotopic

value over enclosure time. This also would explain the difference in the 1994 SSA

samples taken with 18-20 hr enclosure times to those of the other BOREAS samples.

This argument would also aid in the explanation of the non linear trends in concentration

within enclosures as a function of time which have been observed in many Los Monos

and BOREAS experiments (Our data, Crill pers. Comm.).

For the BOREAS sites Amaral and Knowles, 1997 found that the highest rates of

consumption were near the subsurface lower organic and upper mineral layers 6 to 10 cm

from the surface and that under some conditions a potential for methane production

existed even in aerobic core sections. Savage et al., 1997 reported sporadic chamber

measurement with net methane production at the Jack Pine site in 1994. Unfortunately

most concentration measurements have been aimed at determining methane fluxes and

not at exploring this factor. The limited number of isotope measurements that have been,

or could have been, taken from small chambers has normally prevented a clearer



observationof theeffecton isotopiccompositionif it exists.Unfortunately thepossibiliB"
thatthereis achangein thefractionationof methaneasa functionof methane
concentrationcannot bediscounted(Tyleret al., 1994),althoughtheresultsof King et
al., (1989)suggestthisremainsconstant.Also, thepossibilitythatthechangesin the
concentrationsof oxygenandCO2,andotherartifactsof longchambertimesmaychange
thefractionationconstantvalueaswell astherateneedto beexaminedin thefuture.

To correlatetheconsumptionandisotopic fractionationobserved in the chamber

enclosures to the soil itself, a series of soil gas samples were taken at sites near the

enclosures at various soil depths. Some difficulties were encountered in obtaining these

samples especially at the NSA, OJP site where the large amount of moss or lichen along

with litter debris made a definition of the soil surface ambiguous. Also, rocks at the OJP

sites resulted in a relatively non-homogenous soil matrix. Since 2 liters of soil gas

needed to be removed, multiple samples with depth could not be taken. It was necessary

to move the probe approximately 0.5 m between samples, so any correlation to a vertical

profile is lost. The samples taken in 1994 were selected from a larger and more diverse

set of sites around the enclosures than in 1996, and also were taken at generally greater

depths.

The data, which are presented as figures 5, 6 and 7, show the general trend of

decreasing concentration and less negative (more enriched) isotopic composition which

would be expected from methane consumption continuing with depth into the soil. On

each of the data graphs the best fit linear correlation has been draw through the data. As

seen in all of the graphs a considerable increase in scatter in the data is found in the

deeper, lower concentration samples. Resent measurements made under a pine tree at

Scripps Institution of Oceanography have shown extensive fractionation of the methane

isotopes next to roots resulting in very enriched methane isotope values (Fessenden, pers.

comm.) which may be a possible explanation for some of the scatter observed in the

deeper samples.

In graphs 5 and 6 where methane concentration and isotopic composition are

plotted as a function of depth in the soil the linear trend in the data can be extrapolated to

the surface, zero soil depth. Applying a diffusional mixing model, the intercept indicates

the overlying gas composition which would in this case be approximately 1920 ppb and

-53 %0 13C for the overlying air. This is a significant deviation from the measured

ambient air values of approximately 1850 ppb and -48 %0 13C.

Two possible reasons exist for the observed shift. First, the ambients measured

may not be representative of the atmosphere directly above the soil for much of the day,

i.e. during the night. It is possible that during the night methane production at sites close

to the chambers influences the surface layer air concentration enough that the soil profiles

are influenced. Second, con-current production of methane in the soil region near the

surface is influencing the observed soil profile, resulting in an apparent higher and lighter

methane concentration for the overlying air. Both of these hypothesis do have merit.

Ambients right above the surface were not taken at night, however, tower measurements

have not, to our knowledge, shown any support for this theory.

Concurrent methane production would support our soil observations, if the

primary zone of consumption were in the top 10 cm as shown by Amaral and Knowles



(1997)andbelowthat levelconcurrentproductionshowedgreaterinfluence.Additional
supportfor this theoryisstrengthenedby examiningthedatain figure 7. If the linear
correlationdeterminedby thedataisusedto approximateahypothetical"co",reIatingthe
observedconcentrationchangein thesoil to the isotopicfractionationasdonefor the
enclosures,avalueof "ct" = 0.993is found. This trendof lowerenrichmentin the
isotopiccompositionwith decreasingmethaneconcentrationis whatwouldbeexpected
with concurrentmethaneproductionin thesoil. Also theisotopicvaluecorrespondingto
aconcentrationof 1850ppbis approximately-50.2%0,a valuelighter thantheexpected
ambientair but notnearlyashighasthefigure6 interceptof-53%ofor 13Cvsdepth. It is
importantto notethepositionof thefour samplesfrom the SSAin 1994whichsuggesta
differencein the isotopicfractionationconsumption/productionrelationshipascompared
to theNSA samples.Sincemostof theTGB groupseffortswerein theNSA no real
informationon thecharacteristicsof thesoil is availablefor comparisonand,with thefew
samplesobtainedfrom theSSAadditional,conclusionsfor thesesitescannotbemade.

Conclusions.
MethaneconsumptiontheBOREASsoilsat theNSA, OJPandYJOPsiteswas

studiedandtheisotopicfractionationassociatedwith themicrobial oxidationmeasured.
Thefractionationconstantderivedwasfoundto bedependenton thelengthof sample
enclosureplacement.Thedatafromenclosuresin placefor lessthan90min. provideda
valueczof 0.983.Valuesof a from thesameenclosuresat longertimesandfrom
enclosuressampledat timeslongerthan6 hourssuchasthe 1994SSAsamplesshow
significantlylessfractionation(valuesof a closer to 1.0). A few samples taken in 1994

indicate that greater fractionation may take place at some times, possible under very

warm and dry conditions similar to those found at the Los Monos, CA site. The chamber

enclosure data and measurement of the profiles of concentration and isotopic change with

depth in the soils suggest that concurrent methane production at marginal levels in the

soil would be a possible explanation for the observations.
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Table 1.

Kinetic isotope values for carbon in methane during soil oxidation

Coleman et al., 1981. Bacterial cultures 26 ° and 11.5°C

a = k23/kl2

0.975 to 0.987 o)

King et al., 1989. Boreal soils 2hr, approx. 14 °

8hr, approx. 4 °

0.974

0.984

Tyler et al., 1994. Temperate forest observed

corrected (max.) for dilution

0.983

0.978

Deck et al., 1993. Temperate forest, Albany NY.

Dry forest, Los Monos

0.984

0.978 + O.006

BOREAS Boreal forest,

1996 July, Aug., Sept., 0.988

Aug. & Sept. 45-60min. 0.983

.... 90-120min. 0.992

1994 SSA 18-20 hr. 0.994

Bergmaschi and Harris Landfill emitted methane 0.992 (2)

1995.

I) Hydrogen isotope fractionation measured at c_ = 0.675 to 0.897

2) Methane concentrations in the 20 to 60% range. Hydrogen isotope fractionation

measured at c_-- 0.956



Figure Captions.

Figure I. The major sources of methane and the atmospheric values as a function of their carbon and

hydrogen isotope composition. The lines represent theoretical boundaries for methane production by acetate

fermentation and CO2 reduction. Each box contains a substantial number of samples.

Figure 2. Soil methane isotope values determined in enclosures from the Albany, NY. Temperate forest and

Los Monos, CA dry forest sites as a function of the natural log oft.he fraction of methane remaining. The

line represents the fractionation factor (a) for the Albany samples.

Figure 3. Chamber enclosure methane isotope values for selected 1994 and 1996 BOREAS samples as a

function of log fraction of methane remaining. The scale is the same as for figure I, as is the line a =

0.984. The line a = 0.988 is the fit of the 1996 NSA samples and the ambient air values.

Figure 4. The 1996 August and September NSA, BOREAS samples presented on an expanded scale and

separated according to enclosure time. The lines shown are the regression fits and correlation values for

the two time sets. The fractionation values (ct) are given for each line.

Figure 5. Methane concentrations of BOREAS soil gas samples as a function of depth. Uncertainty in the

depth determination may be 3-5 cm. Samples from the 1994 SSA are shown with a different symbol. The

line represents a liner best fit of all the data.

Figure 6. Methane Isotope values for the BOREAS soil gas samples as a function of depth. The symbols

and regression are the same as in fi_tre 5.

Figure 7. Methane isotope values in the BOREAS soil gas samples as a function of concentration, plotted

as the natural log of the ratio of concentration to methane at 1850 ppb. The regression is a linear best fit

with a slope yielding a hypothetical "ct" of 0.9934.
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Appendix 1

Methane samples from productions sites.

The data in this appendix is a combination of data from beaver pond and the Tower Fen

sit taken in 1993 by gross bubble dislodgment into sampling funnels and in 1994 from

several different sampling methods at the Tower Beaver Pond site.

For 1993, samples from the shore at the Gilliam road Beaver ponds, three beaver

ponds near the Old Black Spruce tower site and the Tower Beaver Pond are presented

with data from the Tower Fen site where the samples were taken from the walkways.

Methane percentages in the dislodged bubbles ranged from less than 1% to greater than

60%. Samples taken at the Tower Beaver pond in 1993 had the highest average

concentration of methane and, as shown on figure AI-1, had a 13C composition heavier

(less negative) than the average. The Gilliam Rd. Beaver pond had the lowest average %

methane concentration, but the _3C values for this site, as well as the other sites, had a

wide range in values and were not remarkable when compared to each other. For the D/H

data as a function of percent methane, the limited number of data points and the large

range of values suggests the lack of a definite correlation. The exception to this may be

the two Tower Fen data points which show the lightest (most negative) values. Few

additional conclusions are justified given he spread in the data values and the limited

number of data points from any one site.

The data from the multiple types of samples taken in 1994 at the Tower Beaver

Pond suffer the same problems as the above samples, there are too few points for each

sample type and the range in values is large.

The only conclusion that can be made viewing the results from the production

sites is that the combination of production and oxidation in the sediments results in a

large spread in the data values and that a correlation to the variables driving the

production and oxidation must be made.

The data at the end of the appendix is presented in the same format as submitted

to NASA for the BOREAS documentation set. A value of-9999 indicates a sample

which due to error or lost in sampling or analysis is not reported.



Figure AI-I. The 13C isotopic composition in methane from the producing sites samples in 1993 and 1994

(NSA) as a function of percent methane in the dislodged bubbles. In order shown for legend: Tower Fen,
Gilliam Road Beaver pond, Old Black Spruce beaver ponds, Tower Beaver Pond, 1993 and 1994.

Figure A 1-2. The D/H isotopic composition in methane from dislodged bubbles as a function of percent

methane. The legend is the same as in figure A l-!.

Figure A1-3. The isotopic values for methane from the production sites as a function of their D/H and 13C

composition. The legend is the same as in figure AI-1.

Figure A I-4. The isotopic composition, as functions of D/H and t3C, for samples taken in 1993 and 1994

at the Tower Beaver Pond site in the NSA. Sample types shown in the legend were; dislodged bubbles; sub

sediment pizometer water samples; water samples from immediately above the sediment; and funnel bubble
collections at the water surface.
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Appendix 2

Data from the Chamber Enclosures and Soil Gas samples

CHECSV are the chamber enclosure results. C_ISO values are 13C in permil. The data is

formatted as reported for the documentation set. -9999 indicates a sample lost or not

reported.

SPECSV are the results of the soil gas measurements.



CHECSV

OBS_YEAI OBS_DAY S_TYPE

YYYY DD-MMM

1994 4-Aug C
1994 4-Aug C
1994 4-Aug C
1994 4-Aug C
1994 4-Aug C
1994 4-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1994 24-Aug C
1996 3-Jun C
1996 3-Jun C
1996 3-Jun C
1996 3-Jun C
1996 28-Jun C
1996 28-Jun C
1996 28-Jun C
1996 28-Jun C
1996 2-Aug C
1996 2-Aug C
1996 2-Aug C
1996 2-Aug C
1996 2-Aug C
1996 2-Aug C
1996 3-Aug C
1996 3-Aug C
1996 3-Aug C
1996 3-Aug C
1996 3-Aug C
1996 3-Aug C
1996 8-Sep C
1996 8-Sep C.
1996 8-Sep C
1996 8-Sep C
1996 8-Sep C
1996 8-Sep C
1996 1l-Sep C
1996 11-Sep C
1996 11-Sep C
1996 11-Sep C
1996 11-Sep C
1996 11-Sep C

S_SITE

0

SSA
SSA
SSA
SSA
SSA
SSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA

S_LOC

0

YJP A
YJP B
YJP D
OJP G
OJP H
OJP J
OJP #4-1
OJP #4-1
OJP #4-2
OJP #4-2
OJP #4-3
OJP #4-3
YJ P #4-4
YJP #4-5
YJP #4-6
OJP #4
OJP #7
YJP #4
YJP #6
OJP #4
OJP #7
YJP #4
YJP #6
OJP #4
OJP #4
OJP #4
OJP #7
OJP #7
OJP #7
YJP #6
YJP #6
YJP #6
YJP #4
YJP #4
YJP #4
YJP #4
YJP #4
YJP #4
YJP #6
YJP #6
YJP #6
OJP #4
OJP #4
OJP #4
OJP #7
OJP #7
OJP #7

DEPTH

0 Zcm

TIME CH4_CON C_ISO

min ppbv permil

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

825
825
825
96O
960
960

82
147
6O

120
60
96
61
62
64

260
27O
4O0
410
110
120
80
75
45
90
92
45
90
92
6O

119
121
61

120
122
61

120
122
6O

121
123
6O

120
122
6O

120
122

1150
1000
95O

1010
1020
8OO

1838
1798
1830
1798
1742
1734
1520
1665
1507
1524
1567
1583
1502
1659
1613
1499
1655
1630
1564
1553
1609
1454
1454
1639
1519
1508
1702
1627
1602
1628
1516
1487
1667
1602
1644
1662
1555
1548
1643
1528
1527

-44.6
-44.4
-42.4
-42.5
-44.6
-44.5
-46.1
-46.7
-47.7
-46.6

-47
-48.5
-40.6
-39.1
-44.3
-42.4
-37.6

-52
-43.1
-46.5
-45.8
-46.9
-45.3
-46.4
-44.8
-45.6
-45.5
-44.7

-9999
-46.2
-45.3
-44.9
-47.1
-45.9

-46
-46.4
-44.1
-45.5
-46.8
-45.7
-45.4
-45.1
-44.6
-45.1
-46.3
-45.3
-45.5
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CHECSV

%,
1996
1996
1996
1996
1996
1996

24-Aug A
24-Aug A
24-Aug A
26-Aug A
11-Sep A
11-Sep A

NSA
NSA
NSA
NSA
NSA
NSA

OJP
YJP
YJP
YJP
YJP
YJP

0
0
0
0
0
0

1880
1850
1856
1840
1805
1805

-9999
-48.6
-47.4

-9999
-47.8

-48

Page 2



SPECSV

OBS_YEAIOBSDAYSTYPE

YYYY DD-MMM

1994 4-AugS
1994 4-AugS
1994 4-AugS
1994 4-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 24-AugS
1994 26-AugS
1994 26-AugS
1994 26-AugS
1994 26-AugS
1996 2-AugS
1996 2-AugS
1996 2-AugS
1996 2-AugS
1996 3-AugS
1996 3-AugS
1996 3-AugS
1996 3-AugS
1996 8-SepS
1996 8-SepS
1996 8-SepS
1996 8-SepS
1996 11-SepS
1996 11-SepS

S_SITE

0

SSA
SSA
SSA
SSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA
NSA

S_LOC

0

DEPTH

0 Zcm

YJPA/B
YJPA/B
OJPG/H
OJPG/H
OJP#-4-1
OJP#4-1.1
OJP#4-2
OJP#4-2._
OJP#4-3
OJP#4-3.1
OJP#4-3.:
YJP#4-4
YJP#4-4.1
YJP#6-5
YJP 6
YJP 6.1
YJP 6.2
YJP lc
YJP 3a
YJP lc
YJP 3a
YJP#4-1
YJP#4-2
YJP#7-3
YJP#7-4
YJP#6-1
YJP#6-2
YJP#4-3
YJP#4-4
YJP#6-1
YJP#6-2
YJP#4-3
YJP#4-4
OJP#.4-1
OJP#7-2

TIME CH4_CONC_ISO

min ppbv permil

15
2O
15
20
35
45
5O
40
35
5O
3O
45
30
20
28
33
31
40
40
20
20
15
27
15
20
25
15
15
23
17
15
10
i5
15
17

1 1140 -47.4
1 820 -47.4
1 1320 -44.8
1 1080 -44.6
1 535 -38.2
1 374 -9999
1 392 -36.3
1 480 -39.3
1 712 -9999
1 385 -40
1 950 -9999
1 469 -37.1
1 749 -36
1 1267 -9999
1 1152 -45.9
1 982 -44.1
1 1087 -44.8
1 744 -42.7
1 830 -42.5
1 1188 -44.6
1 1147 -9999
1 1513 -45.8
1 466 -44.4
1 1254 -46
1 1243 -45.1
1 1316 -45.6
1 1362 -46.9
1 1422 -46.7
1 1114 -45.7
1 1194 -45.4
1 1229 -45.9
1 1465 -47.6
1 1289 -45.4
1 1437 -47
1 871 -9999
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